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A repository of:

• metaprograms,

• metadeclarations,

• metainstructions,

• some other metaconditions

a metacomponent

tools

a saving procedure 



A closer look to programs’ development cycle
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PRM: a permanent repository 

metacomponents a metacomponent

synthesizer

a saving procedure 

TRM: a temporary repository 

metacomponents

RCR: a repository of 

construction rules

theorem 

prover

One programming step:

1. indicate components,

2. indicate rules,

3. prove,

4. synthesize

5. save



Examples of theorems to be proved
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x is integer  x < x + 1

(x+1 ≤ isrt(n))     

 ≡  

((x+1)2 ≤ n) 

 whenever (x, k is integer) and-k (x, y ≥ 0)  and-k ((isrt(n)+1)2 ≤ M) and-k (x ≤ isrt(n))

largest integer in 

the implementation

We shall not need to prove the correctness of metaprograms!

Correct metaprograms will be developed.



An example of a program development (1)
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pre (x is free) and-k (y is free) :

 let x be integer tel;

 let y be integer tel;

 x := 3;

 y := x+1 ;

 x := 2*y

post (x is integer) and-k (y is integer) and-k (x < 10)

Program to be developed

Step 1: synthesize the declaration of x

pre (ide is free) and-k (tex is type)

let ide be tex tel  

post var ide is tex

P1 : pre (x is free) and-k (integer is type)

let x be integer tel  

post var x is integer 

a rule in RCR substitution

x → ide

integer → tex



An example of a program development (2)
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Step 2: remove tautology

P1 : pre (x is free) and-k (integer is type)

let x be integer tel  

post var x is integer 

P2 : pre (x is free)

let x be integer tel  

post var x is integer 

Rules to be applied:

• integer is type ≡ NT

• (x is free) is error transparent   derived from  (ide is free) is error transparent

• ((x is free) and-k NT ) ≡ (x is free) derived from 

           con is error transparent implies ((con and-k NT) ≡ con) 

pre prc : sin post poc

prc ⟺ prc-1

pre prc-1 : sin post poc

error-transparency is crucial:

con.er-sta = tt and

(con and-k NT).er-sta = err

P3 : pre (y is free)

let y be integer tel  

post var y is integer 



An example of a program development (3)
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Step 3 and 4: the strengthening of conditions 

P2 : pre (x is free)

let x be integer tel  

post var x is integer 

Rules to be applied:

P3 : pre (y is free)

let y be integer tel  

post var y is integer 

P4 : pre (x is free) and-k (y is free )

let x be integer tel  

post var x is integer and-k (y is free )

P5 : var x is integer pre (y is free)

let y be integer tel  

post (var y is integer) and-k 

  (var y is integer) 

• ide-1 ≠ ide-2 implies ((ide-1 is free) is resilient to (let ide-2 be tex)),

• ide-1 ≠ ide-2 implies ((ide-1 is tex-1) is resilient to (let ide-2 be tex-2)),

pre prc : sin post poc

con resilient to sin

pre prc and-k con : sin post poc and-k con



An example of a program development (4)
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Step 5: sequential composition

Rule to be applied:

P4 : pre (x is free) and-k (y is free )

let x be integer tel  

post var x is integer and-k (y is free )

P5 : var x is integer pre (y is free)

let y be integer tel  

post (var y is integer) and-k 

  (var y is integer) 

P6 : pre (x is free) and-k (y is free )

let x be integer tel  ;

let y be integer tel 

post var x is integer and-k (y is integer )

pre prc-1: spr-1 post poc-1

pre prc-2: spr-2 post poc-2

poc-1  prc-2

pre prc-1: spr-1; spr-2 post poc-2



An example of a program development (5)
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Step 6: the development of assignment

P7 : post (var x is integer) and-k (var y is integer)

   x := 3

  post (var x is integer) and-k (var y is integer) and-k (x = 3)

pre sin @ con

 sin

post con

pre x := 3 @ (var x is integer) and-k (var y is integer) and (x = 3)

 x := 3

post (var x is integer) and-k (var y is integer) and-k (x = 3)

x := 3 @ (var x is integer) and-k (var y is integer) and x = 3 ⟺ 

(var x is integer) and-k (var y is integer) 

substitution

proof and

substitution

theorem

prover



An example of a program development (6)
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Step 7: the development of assignment

P8 : post (var x is integer) and-k (var y is integer) and (y = 3) 

   y := x+1

  post (var x is integer) and-k (var y is integer) and-k (y = 4)

pre sin @ con

 sin

post con

pre y := x+1 @ (var x is integer) and-k (var y is integer) and (y = 4)

 y := x+1

post (var x is integer) and-k (var y is integer) and-k (y = 4)

y := x+1 @ (var x is integer) and-k (var y is integer) and (y = 4) ⟺ 

(var x is integer) and-k (var y is integer) and (y = 3) 

substitution

proof and

substitution

theorem

prover



An example of a program development (7)
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Step 8: sequential composition

P6 : pre (x is free) and-k (y is free )

let x be integer tel  ;

let y be integer tel 

post var x is integer and-k (y is integer )

P7 : post (var x is integer) and-k (var y is integer)

   x := 3

  post (var x is integer) and-k (var y is integer) and-k (x = 3)

P8 : post (var x is integer) and-k (var y is integer) and (y = 3) 

   y := x+1

  post (var x is integer) and-k (var y is integer) and-k (y = 4)

P9 : pre (x is free) and-k (y is free)

let x be integer tel  

let y be integer tel

x := 3;

y := x + 1

  post (var x is integer) and-k (var y is integer) and-k (y = 4)



An example of a program development (8)
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Step 9: the development of an assignment 

P10 : pre (var x is integer) and-k (var y is integer) and-k (y = 4)

    x := 2*y

   post (var x is integer) and-k (var y is integer) and-k (y = 4) and-k (x = 8)

(var x is integer) and-k (y=4) and-k (x = 8)  (var x is integer) and-k (x < 10)

theorem

proverP11 : pre (var x is integer) and-k (var y is integer) and-k (y = 4)

    x := 2*y

   post (var x is integer) and-k (var y is integer) (x < 10)

Rule to be applied:

pre prc: spr post poc

poc  prc-1

pre prc : spr post poc-1



An example of a program development (8)
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Step 9: sequential composition

P11 : pre (var x is integer) and-k (var y is integer) and-k (y = 4)

    x := 2*y

   post (var x is integer) and-k (var y is integer) (x < 10)

P9 : pre (x is free) and-k (y is free)

let x be integer tel  

let y be integer tel

x := 3;

y := x + 1

  post (var x is integer) and-k (var y is integer) and-k (y = 4)

P12 : pre (x is free) and-k (y is free) :

    let x be integer tel;

    let y be integer tel;

    x := 3;

    y := x+1 ;

    x := 2*y

   post (x is integer) and-k (y is integer) and-k (x < 10)

target 

program



The need of a formalized theory
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We need a formalized theory rich enough to prove 

lemmas in the course of program development in 

Lingua-V

We shall call it a M-theory (Master Theory)

and its language – a M-language



Our way to M-theory
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1. Building an abstract denotational framework of a language of a formalized 

theory:

a. building an equational grammar,

b. building the algebras of syntax and denotations and a corresponding 

function of semantics.

2. Building a denotational framework of M-language:

a. building an equational grammar as an extension of Lingua-V 

grammar,

b. building an algebra of syntax as an extension of Lingua-V syntactic 

algebra,

c. deriving an algebra of denotations from Lingua-V denotational 

algebra.

3. Building an axiomatic framework for M-language:

a. defining a standard interpretation,

b. defining a set of axioms for which the standard interpretation 

constitutes a model.



A recollection of formalized theories (1)
First-order theories
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In first-order theories we talk about:

ele : Uni        ― elements of a set called a universe

fu : Unicn ⟼ Uni   ― functions with n ≥ 0

pr : Unicn ⟼ Bool   ― predicates with n ≥ 0

A language of first-order theories includes two syntactic categories

terms    ― represent functions

formulas   ― represent predicates

Primitives of syntax

var : Variable    ― variables (running over Uni)

fn : Fn      ― function names

pn : Pn      ― predicate names

sep : Separator    ― separators, e.g.: „ ( ” , „ ) ” , „ , …

Alphabet = Variable | Fn | Pn | Separator

arity : Fn | Pn ⟼ {0, 1, 2,…} ― arity of names



A recollection of formalized theories (2)
The language of first-order theories
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ter : Term     – the least language over Alphabet such that:

var         : Term  for all var : Variable

fn()        : Term  for all fn with arity.fn = 0

fn(ter-1,…,ter-n) : Term  for all fn with arity.fn = n and ter-i : Term for i = 1,…,n

for : Formula    – the least language over Alphabet such that:

true, false      : Formula  

pn(ter-1,…,ter-n)  : Formula  for all pn with arity.pn = n and ter-i : Term

not(for)       : Formula  for all for     : Formula

and(for-1, for-2)   : Formula  for all for-1, for-2 : Formula

or(for-1, for-2)    : Formula  for all for-1, for-2 : Formula

implies(for-1, for-2) : Formula  for all for-1, for-2 : Formula

(∀var)for       : Formula  for all var : Variable and for : Formula

(∃var)for       : Formula  for all var : Variable and for : Formula

ground formulas – no variables; e.g. 1 < 2

free formulas  – have variables; e.g., x < 2



A recollection of formalized theories (3)
An example of a first-order theory of Peano arithmetics (1)
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Language

Variable = {x, y, z,…, x-1, x-2,…}, variables may have indices, 

Fn  = {zer, suc)

Pn  = {nat, equ}

with

arity.zer = 0   zer() or just zer represents number zero

arity.suc = 1   suc(x) is the successor of x

arity.nat = 1   nat(x) means that x is a number 

arity.equ = 2   equ(x,y) means that x and y are equal

Examples of formulas

true, nat(zer), 

equal(suc(zer), suc(x)), 

and(equal(suc(zer), suc(x)), equal(suc(suc(y)), suc(suc(x))),

(∀x) (equal(x, suc(x)).



A recollection of formalized theories (4)
An example of a first-order theory of Peano arithmetics (2)
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A reader-friendly notation:

(ter-1 = ter-2)   for equ(ter-1, ter-2),

(for-1 and for-2)  for and(for-1, for-2)

(pre-1 → pre-2) for implies(pre-1, pre-2).

Axioms

x = x

x = y → y = x

(x = y and y = z) → x = z

(x-1 = y-1 and … and x-n = y-n) → (fn(x-1,…,x-n) = fn(y-1,…,y-n))  for all fn : Fn

(x-1 = y-1 and … and x-n = y-n) → (pn(x-1,…,x-n) = pn(y-1,…,y-n))  for all pn : Pn

nat(zer)       zero is a natural number,

nat(x) → nat(suc(x))    the successor of a nat. num. is a nat. num.,

nat(x) → not (suc(x) = zer)   the successor of a nat. num. never equals zero,

x = suc(y) and x = suc(z) → y = z suc is a reversible function



A recollection of formalized theories (5)
Interpretation and semantics (1)
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An interpretation of a language of a formalized theory:

Int = (Uni, F, P)

with

Uni – set called universe, its elements are called primitive elements,

F – function; F[fn] : Unicn ⟼ Uni for arity.fn = n 

      F[fn] : ⟼ Uni   for arity.fn = 0

P  – function;  P[pn]: Unicn ⟼ Bool; 

    P[true] = tt,  P[false] = ff

A valuation is a total function that assigns primitive elements to variables: 

val : Valuation = Variable ⟼ Uni

The semantics of terms and formulas:

ST : Term   ⟼ Valuation ⟼ Uni

SF : Formula ⟼ Valuation ⟼ Bool



A recollection of formalized theories (6)
Interpretation and semantics (2)

July 12th, 2025 A.Blikle - Ecosystems for programmers in Lingua
21

The semantics of terms:

ST : Term ⟼ Valuation ⟼ Uni

ST.[var].val         = val.var,                  var : Variable

ST[fn(ter-1,…,ter-n)].val  = F[fn].(ST[ter-1].val,…,ST[ter-n].val)  arity.fn = n 

The semantics of formulas:

SF : Formula ⟼ Valuation ⟼ Bool

SF[true].val        = tt

SF[false].val       = ff

SF[pn(ter-1,…,ter-n)].val = P[pn].(ST[ter-1].val,…,ST[ter-n].val),  arity.fn = n 

SF[(for-1 and for-2)].val = SF[for-1].val and SF[for-2].val

SF[not(for)].val      = not SF[for]

SF[(∀var)for].val     = tt  iff for every   ele : Uni,      for.val[var/ele] = tt

SF[(∃var)for].val     = tt  iff there exists ele : Uni, such that for.val[var/ele] = tt

Note: and, not are metaoperations.



A recollection of formalized theories (6)
Satisfaction, models and validity
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For a given interpretation:

 Int = (Uni, F, P)

A formula for is satisfied in Int if:

 SF[for].val = tt  for every val : Valuation

An interpretation Int is said to be a model of a theory with set of axioms A if all 

axioms are satisfied in Int.

A formula for is said to be valid in a theory with a set of axioms A, in symbols

 A |- for

if it is satisfied in every model of this theory. 

E.g.: not(zer = suc(zer)) is valid in Peano’s arithmetics.



A recollection of formalized theories (7)
Deduction – a way of proving the validity of formulas
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A |= for for is a theorem in the theory with axioms A if it can be derived from A

  by means of deduction rules

The main deduction rules

Rule of substitution

 A |= for(x)

 A |= for(ter)

 x free in for(x)

 ter – an arbitrary term

Rule of generalization

 A |= for(x)

 A |= (∀ x) for(x)

 x free in for(x)

Rule of detachment

 A |= for-1

 A |= for-1 → for-2

 A |= for-2

Gödel’s completeness theorem

In every first-order theory with axioms A

A |- for iff    A |= for



A recollection of formalized theories (7)
The weaknesses of first-order theories

July 12th, 2025 A.Blikle - Ecosystems for programmers in Lingua
24

Every first-order theory which has an infinite model, has infinitely many 

non-isomorphic models. 

Colloquially: In first-order theories we never know what we are talking 

about. 

Three models of Peano arithmetic:

1. Uni = NatNum, zer = 0, suc(x) = x+1 all elements of Uni are reachable

2. Uni = ReaNum, zer = 0, suc(x) = x+1 not all elements of Uni are reachable

3. Uni = NatNum | {0,5}, zer = 0, suc(x) = x+1 for x : NatNum,  suc(0,5) = 0,5

In first-order Peano arithmetic

 x ≠ suc(x)

is not a theorem!

standard model



A recollection of formalized theories (8)
Second-order theories
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Second-order Peano’s arithmetics:

• All first-order axioms

• A second-order axiom: (X(zer) and (X(x) → X(suc(x)) → (nat(x) → X(x))

X – a predicative variable

Two metatheorem:

1. All models of 2-order Peano’s arithmetic are isomorphic to the standard 

model.

2. 2PA |= x ≠ suc(x)

Proof of 2. by induction:

1. 0 ≠ suc(0)       – is an axiom

2. if x ≠ suc(x) then suc(x) ≠ suc(suc(x))  – suc is reversible by an axiom

3. x ≠ suc(x) for all x      – by the 2-order axiom

In second-order theories with arithmetic 

we can carry out proofs by induction.



A recollection of formalized theories (8)
The weaknesses and strengths of second-order theories
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Gödel’s incompleteness theorem

In second-order theories with arithmetics there exist valid formulas which 

can’t be proved, i.e. |- for but not |= for.

Gödel’s adequacy theorem

In second-order theories with arithmetic every proved formula is valid i.e. 

if |= for  then |- for.

we can trust the theorems

that have been proved
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Thank you for 

your attention 
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